On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.
نویسندگان
چکیده
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.
منابع مشابه
Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range.
First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak visible-light spectral lines on cold trapped H(3)(+) ions. A highly accurate potential surface is ob...
متن کاملTreating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
Two methods are developed, when solving the related time-independent Schrodinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of ...
متن کاملEnergy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...
متن کاملTwo- and three-body kinematical correlation in the dissociative recombination of H(3)(+).
Fragmentation patterns for dissociative recombination of the triatomic hydrogen molecular ion H(3)(+) in the vibrational ground state have been measured using the storage ring technique and molecular fragment imaging. A broad distribution of vibrational states in the H(2) fragment after two-body dissociation and a large predominance of nearly linear momentum geometries after three-body dissocia...
متن کاملRotation-Vibration States of Triatomic Molecules at Dissociation
Nuclear motion resonant states of triatomic molecules are calculated using an L2 method known as Complex Absorbing Potential (CAP). This method is implemented in a new program named RES3D which includes a new automatic procedure to obtain the resonant states’ energies and lifetimes, allowing for the first time the quantification of the results’ accuracy through a consistency test across differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 29 شماره
صفحات -
تاریخ انتشار 2010